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ABSTRACT 

“It / I” is a two-character theater play where the human character I (played by a real actor) is 

taunted and played with by an autonomous computer character It on a computer controlled, 

camera-monitored stage. The play was performed before live audiences in November of 1997 

and, for the first time ever, brought an automatic computer character to a theatrical stage. This 

paper reports the experience and examines important technical developments needed for the 

successful production of “It / I”. In particular we describe the interval script paradigm used to 

program the computer character and the ACTSCRIPT language for communication of actions and 

goals. Although our experiments have been restricted to physical interactive spaces, we believe 

that interval scripts and ACTSCRIPT can successfully address the control and management of any 

virtual environment with a complex temporal structure or a strong underlying narrative. 

Keywords:  

Interactive spaces; computer vision; programming virtual and augmented reality, scripting 

interaction; synthetic characters, narrative control; story control; computer theater. 
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1 INTRODUCTION 

While the movie and music industries have been extensively using computers for decades, 

theaters have rarely employed any electronic equipment except for light and sound control, and 

ticket reservation. Although computers have been experimentally used to generate “electronic 

puppets” (where a human puppeteer controls a computer graphics character displayed on a stage 

screen, as pioneered by George Coates and Mark Reaney [1]), we are interested on performances 

where the computer automatically controls the character constituting what we call a computer-

actor. Notice that with autonomous computer-actors it is possible to stage plays where a member 

of the audience can take the place of the human actors and have a first-hand, immersive, personal 

experience of the universe depicted on the play. This is possible because the performances can be 

easily repeated as many times as needed, without the participation of human actors. This creates 

an interesting perspective for theatrical audiences, where the story of a known play can be 

“lived” from inside — similar to the “rides” in theme parks that are associated with movies. 

Although we are using a theatrical performance as our application scenario, it is important to 

point out that the technical difficulties faced when creating autonomous actors on stage present a 

significant challenge for the design and construction of robust sensing and control systems. The 

difficulties are, in fact, very similar to traditional issues on building interactive spaces and 

system. Moreover, computerized theater forces the investigation and improvement of tools and 

techniques that have not been addressed by the tele-presence and pervasive computing research 

communities. For example, the need of constant reworking of the material of a play during its 

rehearsal requires powerful and easy-to-use systems for defining the behavior of the characters 

and the space. Also, live performances before an audience requires robustness and reliability 

quite beyond the level typically present in laboratory-level demonstrations and experiments. 
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The computer theater play “It / I” was written, produced and performed with the aim of 

developing and testing tools for interactive immersive systems populated by characters and 

driven by a story.  Unlike previous work involving automated characters (see [2-4]), our work 

addresses the situation where the actor or user's body is the body of one of characters, and the 

story is controlled by the computer. This requires the recognition of human actions as they are 

performed, not as written or clicked-in an interface by a displaced user. Finally, unlike any other 

previous work with computer actors, “It / I” implemented the autonomous system and run it 

before live audiences. 

This paper starts by describing the concept of computer theater and how the 40-minute play 

“It / I” transforms the theatrical stage into an interactive environment. We follow with an analysis 

of the computer system controlling the computer character It, and a brief description of technical 

aspects of the play. The two main technical developments featured in “It / I” are the interval 

script paradigm used for character and story scripting (based on Pinhanez et al. [5]) and the 

language for communication between characters, story, and physical devices called ACTSCRIPT. 

The description of both paradigms stresses the burden placed upon interactive, immersive 

systems by the need to recognize human action in a physical environment when controlling a 

complex interactive narrative. We end by describing the performances and further developments 

in the play and technology. In particular, we argue that interval scripts and ACTSCRIPT are 

potential solutions for similar problems encountered in the design and implementation of virtual 

and augmented reality environments with complex sequencing of actions or with an underlying 

narrative structure. 

3 



2 COMPUTER THEATER 

Computer theater is a term referring to live theatrical performances involving the active use 

of computers in the artistic process, (see Pinhanez [6, 7] for a detailed exposition about computer 

theater, the origins of the term, and related works). The research described in this paper has 

concentrated on building automatic, semi-autonomous computer-actors able to interact with 

human actors on camera-monitored stages. However, automatic control does not mean pre-timed 

response. Rather, computer-actors should be built as reactive autonomous systems that sense the 

world, compare the current situation to a script stored in memory, and choose the appropriate line 

of action. Otherwise, the magic of performance, the energy of live theater, is lost as the human 

and computer actors are not responsive to each other or to the audience. 

One of the most interesting aspects of having autonomous computer actors on stage is that 

we can have audience interaction in truly novel ways. It is possible, for instance, to control the 

character’s behavior according to the response of the audience. After the conclusion of the 

actor/computer performance in  “It / I”, we transformed the stage into an interactive space where 

members of the audience could re-enact the story of the play,  taking on the role of the main 

character. In this scenario, the play is expanded from the ritualistic happening of the performance 

into a universe to be explored and experienced by a user1. 

The performance context brings two simplifying factors to the construction of interactive, 

immersive systems (see also [7]). First, the human actor knows how to interact with the computer 

character within the limitations of the sensory apparatus. Second, after watching the performance, 

                                                 

1 We employ the term “user” to differentiate members of the audience from the actors. 
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the members of the audience transformed in actors have probably learned the basic structure and 

interaction modes of the play. In this context, system design problems like the learning of the 

interaction and navigation become less prevalent. Also, the development of the story of the play 

can be shaped to facilitate the computer recognition of the actor/user activities. 

3 IT/I: A COMPUTER THEATER PLAY 

For testing these ideas one of the authors of this paper — Claudio Pinhanez — wrote the 

computer theater play “It / I”2. The play is a pantomime where one of the characters, It, has a 

non-human body composed of  computer graphic (CG) objects projected onto video screens. The 

objects are used to play with the human character, I, performed by a real actor on a stage. The 

computer character It can also “speak'' through images and videos projected on the screens, 

through sound played onstage speakers, and through the stage lights.  

An important aspect of “It / I” is that user/actor interaction keeps the basic structure of the 

narrative while providing the actor and the audience with a truly responsive computer character. 

The play follows the “less choice, more responsiveness” paradigm for interactive stories 

proposed in Pinhanez et al. [8], which downplays the importance of user choice among story 

alternatives over the use of local responsiveness of characters and the environment. Like in a 

traditional theater play, the overall development of the story is predetermined and known by all 

actors, but the details of the actual performance (intensity, gesturing, pauses, audience interplay) 

are modified each performance based on how the other actors are performing their roles, how the 

audience is reacting, etc. 

                                                 

2 “It / I” was inspired by three plays by Samuel Beckett, Act Without Words I, Ghost Trio, and Waiting for Godot. 
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Figure 1. Scene from “It / I”. The computer graphics object on the 
screen is autonomously controlled by the computer character It. 

The play was also written considering the sensory limitations of computer vision. That is, 

actions of I that had to trigger a response from It were restricted to those that the computer could 

recognize automatically through image processing. In many ways, It's understanding of the world 

reflects the state-of-art of real-time automatic vision: the character's reaction is mostly based on 

tracking I's movements and position and on the recognition of some specific gestures  (using [9]). 

Figure 1 shows a picture of a typical scene: the actor is on the stage interacting with the TV-like 

object projected in the screen behind him. 

3.1 Physical Setup 

Figure 2 depicts a diagram of the different components of the physical setup of “It / I”. The 

sensor system is composed by three cameras rigged in front of the stage. The computer controls 

different output devices: two large back-projected screens; speakers connected to a MIDI-

synthesizer; and stages lights controlled by a MIDI light board. 
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Figure 2. Diagram of the physical structure employed in “It / I”. 

3.2 The Play 

Let us examine the basic plot of the “It / I” in order to access the sensing and controlling 

challenges faced by the autonomous system. When scene 1 of the play starts, I is sitting on the 

center of the stage, distracted by the music played off-stage by a pianist. It attracts I's attention 

by displaying a beautiful image of the sun on the left stage screen. When I stands up, the image 

moves away, and a CG-clock appears, running a countdown. I tries to hide from the imminent 

explosion, while It projects a movie showing that the clock can be stopped by a gesture. When I 

executes the gesture the clock disappears, immediately being replaced by a new clock. Clocks 

continue to appear, at a faster rate than I can stop them. After some time I gives up and protects 

himself from the coming explosions (which, in fact, end up not happening). The clocks disappear 

and the piano music returns. 
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The basic sensory capacity in scene 1 is the recognition of body shapes. The information that 

I has stood up triggers the disappearance of the sun image and the bringing of the clocks. The 

stopping gestures control the turning off of the clocks and their absence causes the explosion. For 

maximum responsiveness between the computer and human actors, the number of clocks, the 

time until they “explode”, and the gesture that stops them are not pre-determined by the script. 

Instead, whenever I succeeds stopping a clock, a new one is created with a shorter time to 

explosion and/or a faster tick speed. The result is that the human actor has actually to work as 

fast as he can to stop the clocks, but the gradual shortening of the time to the explosion will 

eventually make I fail to stop a clock. Independently of how many clocks were stopped, scene 1 

proceeds as determined in the script of the play. This structure clearly exemplifies our 

commitment to the “less choice, more responsiveness” paradigm as discussed before. 

In scene 2, I is again instigated to play by an image — a picture of a family. This time, a 

CG-object similar to a photographic camera appears on the right screen and follows him around. 

When I makes a pose, the camera shutter opens with a burst of light and the corresponding 

camera shutter sound. On the other screen a CG-television appears and, when I gets close, the 

television starts to display a slide show composed of silhouette images “taken'' by the camera. 

After some pictures are shown, the camera “calls” I to take another picture. This cycle is repeated 

until I refuses to take yet another picture and stays in front of the television, provoking an irate 

reaction from It, which throws CG-blocks at I while flickering the lights and playing really loud 

noise. 

The actions of It in scene 2 are solely based on the position of I. I's interest in It is assumed 

when he gets close to either the camera or the television. For instance, the refusal to continue 

taking pictures is detected when the camera “calls'' three times and I does not move from the 
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front of the TV screen. Although simple, the sensing allows quite flexible interaction in this 

scene. The number of take-picture-watch-tv cycles is not pre-determined: the human actor 

decides to refuse to play when he — as a performer — believes the character (and maybe the 

audience) has reached the emotional potential to do that. Also, there is room for improvisation in 

terms of when and how the pictures are taken since the camera clicks only when the actor has 

been still for a few seconds. 

In scene 3 the saga between It and I continues, with I being haunted by an agitated, restless 

electric switch-like CG-object which always keep itself far from the reach of I's hands. I is then 

shown (by video clips) that he can control the switch's position by making special gestures while 

standing on the top of a block. When he finally gets close enough and seems to be able to turn the 

switch off, I discovers that the objects are only projections on a screen. In a Beckettian way,  I 

tries to hang himself — without success — and provokes another angry reaction from It.  

In the beginning of scene 4, I decides to ignore It, which then brings all the objects to the 

screen, trying to attract I's attention. Finally, given the lack of response, It brings the CG-switch 

to the screen and turns it off, leaving I in an empty, silent, dark world. 

4 SYSTEM ARCHITECTURE 

Figure 3 displays the control architecture used in the performances of “It / I”. It is a 2-layer 

architecture in which the upper layer contains information specific to the computer character and 

the bottom layer is comprised of modules directly interacting with the actual input and output 

devices. This control model is a simplification of the 3-layered architecture, called story-

character-device architecture, or SCD, proposed by Pinhanez [10]. 
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As shown in fig. 3, the computer character control system is composed of one active element 

– the interaction manager – that processes the interaction script. The interaction script is 

separated into three parts: the description of the story in terms of actions to be performed by the 

computer and the human characters; the specification of It’s actions, that is, what the computer 

character actually does when trying to perform the actions needed by the story; and the 

description of how the human actor’s movements are recognized according to the current 

moment in the story, or I’s actions. 
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   script
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output
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storyIt's actions I's actions
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Figure 3. System architecture of “It / I”. 
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Figure 4. The 3-camera input to the vision module and the 
computed silhouette of the human actor (enclosed in the 
rectangle). 

In the remaining of this section we describe in more detail two of these device modules since 

they were implemented based on some innovative ideas for the construction of autonomous 

interactive computer graphics characters and interactive spaces. 

4.1 The Vision Module 

The vision module answers queries about the position (x, y, z coordinates) and size of the 

actor and four large blocks; about number of persons on stage (none, one, more than one); and 

queries about the occurrence of the pre-trained gestures.  

In the performance setup we employed a frontal 3-camera stereo system that is able to 

segment the actor and the blocks, computing a silhouette image that is used to track and 

recognize gestures. The stereo system, based on Ivanov et al. [11] work, constructs off-line a 

depth map of the background — stage, backdrops, and screens. Based on the depth map, it is 
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Figure 5. Gestures recognized by the vision module. 

possible to determine in real-time whether a pixel in the central camera image belongs to the 

background or to the foreground, in spite of changes in the background imagery. This is a 

considerable improvement over background-subtraction vision systems traditionally used in 

interactive environments [12] since background-segmentation works even when lighting changes 

and when video is projected on screens or other surfaces. In particular, it enables color lights, 

light fades, and similar elements of theatrical lighting. 

Figure 4 shows a typical visual input to the system and the silhouette found. Using the 

silhouette, a tracking system analyses the different blobs in the image to find the actor. The 

analysis is performed under assumptions about the continuity and stability of movement, 

position, and shape of the actor. Smaller blobs are labeled as blocks. 

The vision system is also trained to recognize 5 different static gestures. For this, we 

employed a simplification of the technique described by Davis and Bobick in [9]. Figure 5 

depicts the 5 gestures recognized by the system. 
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4.2 The Computer Graphics Modules 

The computer graphics modules control the generation and movement of the different 

objects and flat images which appear on the two stage screens. Each CG module basically 

processes requests (in the ACTSCRIPT format described later) translating them into Inventor 

commands. 

In our system, whenever an object or image moves, sound is produced. The importance of 

sound to enhance image is well known in the movie industry, but, surprisingly, only a few 

interactive CG characters and environments seem to have really explored this facet of animation. 

Here we are not talking about the inclusion of sound effects in the post-production phase of CG 

videos, or about synchronizing speech to talking characters (as in Morishima et al. [13]). Rather, 

we are interested in the automatic generation of pre-defined sound effects as the objects move 

around the world. 

We implement sound production as short MIDI-files associated to each object's translation 

and rotational movements through an Inventor Engine object. The MIDI-file is sent to the 

synthesizer — through a request command to the sound module — according to a threshold 

function describing when the file must be played. Typical examples of such functions used in 

“It / I” are: a function that plays the sound periodically while the movement lasts; a function that 

looks for peaks in the velocity; a function that triggers whenever there is a peak in the derivative 

of the curvature of the path. The last function is used quite successfully to automatically control 

swiveling sounds when the CG-camera is performing fast rotational movements. 

The coupling of sound to animation seems to have played a major role in making the 

character It “alive”, compelling, and expressive. Due to limitations in the computers used during 

the performances, complex animations are not possible. However, we easily controlled the 
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“mood” of the character (playful, irate, suspicious, etc.) simply by associating sound files that 

have that particular mood. 

5 SCRIPT REPRESENTATION 

The major technical novelty in “It / I” is the scripting language used to describe the story, the 

interaction with the human actor, and the behavior of It. The 40-minute interaction between It 

and I is written as an interval script, a language for interaction based on the concept of time 

intervals and temporal relationships (see [5, 14] 

Previous work on scripting languages can be divided into two types. The first deals with 

languages for scripting movements and reactions of characters, like the work of Perlin [15], 

Kalita [16], and Thalman [17]. In these cases, the emphasis is on realistic-looking ways of 

describing human motion with little provision for scripting interaction and sensory input. As 

mentioned above, our character It is constructed exhibits quite simple movements, so our system 

did not require advanced futures in this area. 

The other type of scripting languages corresponds to languages for description of interaction 

as for example Director [18], or MAX [19], and the works of Buchanan and  Zelllweger [20], 

Hamakawa & Rekimoto [21], and Andre and Rist [22]. Those languages, however, lack 

appropriate ways to represent the duration and complexity of human action in immersive 

environments: hidden in the structure is an assumption that actions are pin-pointed events in time 

(coming from the typical point-and-click interfaces those languages are designed for) or a simple 

sequence of basic commands. 

5.1 Interval Scripts 

An interval script associates a temporal interval to every action in the script. To each 

interval a label, past, now, or future is assigned during run-time, corresponding to the 
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situations where the action has occurred, is occurring, or have not yet occurred, characterizing 

what we call the PNF-state of the action. This is a significant departure of traditional event-

reaction based systems which can not distinguish between events that already occurred (past) 

from the ones that are still to occur (future). 

An interval script is a computer file containing the description of each action and statements 

about how the intervals are related temporally. A complete description of the syntax and 

semantics of interval scripts is beyond the scope of this paper (see [14] for a detailed description). 

We opted to present here an example that illustrates some of the main features of the paradigm. 

Figure  6 shows the description of five intervals occurring in the beginning of the first scene 

of “It / I”. They control a short segment of the scene where It brings an image of the sun to the 

screen and moves it away when I shows interest on it by standing up. 

Interval script files are converted into C++ code through a special compiler that encapsulates 

the different intervals in function calls. The semantics of each interval is defined by three 

functions: STATE, a method to compute the current PNF-state of the action; START, a function 

to start the action or sensing corresponding to the interval; and STOP, a function to end it.  
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%%%%%%%%%% detection of seating %%%%%%%%%%%%  
"I is seated"= 
{ STATE: 
  [> if (vision.hasPersonAttribute (SEATED)) 
      return NOW;  
    else return PAST-OR-FUTURE;  
  <]. 
}. 
 
%%%%% bringing the image to the screen %%%%  
"bring sun image"= 
{ START: 
  [> 
   ScreenCoord centerSmall (0.0,0.0,-1.0); 
   ScreenCoord startFrom (0.0,0.0,-40.0); 
   leftScreen.move (sunimageId,centerSmall,  
                    startFrom,NULL,0,40, 
              "decrescendo"); 
  <]. 
 
 STOP: 
  [> leftScreen.stopMove (sunimageId);<]. 
 
 STATE: 
  [> return leftScreen.moveState (); <]. 
}. 
 
%%%%%%%% removing the image to the screen %%% 
"remove sun image"= 
{....  (similar to "bring sun image") ....}. 
 
%%%timer to inforce permanence of image  %%%%  
"minimum time of sun image"=TIMER(10.0). 
 
%%%%%%%% the scene with the sun image %%%%% 
"sun image scene"= 
{ 
 WHEN "bring sun image" IS PAST  
  TRYTO START "minimum time of sun image". 
 
 WHEN "I is seated" IS PAST  
   AND "minimum time of sun image" IS PAST 
  TRYTO START "remove sun image". 
 
 START: TRYTO START "bring sun image". 
 
 STOP: TRYTO START "remove sun image". 
 
 STATE:  
  IF "bring sun image" IS NOW  
   OR "remove sun image" IS NOW ASSERT NOW, 
  IF "remove sun image" IS PAST ASSERT PAST. 
 
 "bring sun image", "remove sun image",  
   "minimum time of sun image" 
  ONLY-DURING "sun image scene".  
}. 

Figure 6. Example of an interval script from scene I of 
“It / I”. 
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These functions can either be written as C++ code (inside the special symbols [> and <]) or 

as a combination of previously defined intervals. For example, in fig. 6 the interval "I is 

seated" determines its PNF-state by calling a method of the C++-object vision that queries 

the vision module at the device level. "bring sun image" and "remove sun image" define 

START functions calling methods of the C++-object leftScreen, sending requests to the 

CG module of the left screen to move the sun image.  The interval "minimum time of sun image" 

is defined by the macro TIMER, a C++-object that takes 10 seconds to make the interval go to the 

past state after the interval is started. 

The intervals described so far simply encapsulate C++ code. One of the goals of the design 

of interval scripts was to have easy ways to build more complex intervals from basic ones. The 

interval "sun image scene" is such a case. The definition of this interval describes event 

relationships between the intervals defined before using the two WHEN statements and the 

interval's own START, STOP, and STATE functions. The first WHEN asserts that when the 

bringing of the sun image is over the timer "minimum time of sun image" is started; the second 

starts to remove the image when I is not seated anymore, provided that the minimum 10-second 

period of image exposure is completed. 

The syntax of interval scripts allows the definition of start and stop functions in terms of 

previously defined intervals. Two examples are the START and STOP functions of the interval 

"sun image scene" which are defined by calls to the START function of "bring sun image" and 

"remove sun image", respectively. When the "sun image scene" interval is set to start (by a WHEN 

statement not shown in the figure), the executed action is to call the START function of the 

"bring sun image" interval, executing its corresponding C++ code.  Interval scripts allow 

complex combinations of start and stop functions of different intervals when describing higher 
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level functions. The STATE of "sun image scene" is also defined based on previously defined 

intervals. If either "bring sun image" or "remove sun image" are happening now, the PNF-state of 

the interval is defined to be now; if "remove sun image" is over, the state is past; 

otherwise, an undetermined PNF-state is assumed as default. 

5.2 Temporal Relationships and Constraint Propagation 

One of the major concerns of our work on scripting languages is to provide a structure which 

can handle complex temporal relationships. Human actions take variable periods of time; also, 

the order of the performance of actions to achieve a goal is often not strict. In other words, 

actions — and thus, interaction — can not be fully described neither by events (as Director [18] 

does), nor by simple tree-forking structures as proposed by Perlin's or Bates' works [2, 3], nor by 

straight encapsulation such as suggested by structured programming. 

As in Andre and Rist [22], we adopted Allen's interval algebra [23] as the temporal model of 

interval scripts. According to this algebra the temporal relationship between any two intervals is 

defined as a disjunction of 13 basic primitives. Using the interval algebra, it is possible to 

represent temporal relations between character and system actions and states as constraints based 

on the 13 primitives, and to determine which actions should be happening by performing 

constraint propagation during every cycle of the system. However, unlike Andre and Rist [22], 

our system can perform very fast constraint propagation using the PNF propagation algorithm 

developed by Pinhanez and Bobick [24] (see also [14] for a more thorough description). It is 

beyond the scope of this paper to detail how the algebra works as a programming language for 

interactive spaces, or our approach for fast constraint propagation, or how the interval script is 

actually computed (see [14] for details). Our objective here is to exemplify how temporal 
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constraints can be incorporated into interval scripts allowing a significant increase in script 

expressiveness. 

The last line of "sun image scene" is a statement that declares that "bring sun image", 

"remove sun image", and "minimum time of sun image" can only happen during "sun image 

scene". This statement creates a temporal constraint linking the PNF-state of all these actions and 

preventing, for instance, the call of the start function of "remove sun image" if "sun image scene" 

is in the past state, even if all the conditions listed in the WHEN declaration apply. With 

statements like these, it is easy to create hard constraints among the actions and states that 

virtually inhibit the execution of an action even in the case of sensing error (see [14]). 

Events, tree-structures, and encapsulated actions and other basic elements from other 

scripting languages are all subsumed by Allen's algebra temporal relationships. But the interval 

script paradigm allows also the description of more complex relations that occur in real 

interaction, like parallel and mutually exclusive actions, and even causality.  

6 COMMUNICATING ACTIONS 

In [25], Pinhanez & Bobick revitalized Roger Schank's conceptualizations [26] as a 

formalism to represent action that enables shallow reasoning. We are currently developing this 

work further into a language, ACTSCRIPT, able to represent actions, requests, queries, and goals in 

a physical environment. Unlike previous work in languages for CG characters (for example, [3, 

16, 17]), ACTSCRIPT allows recursive decomposition of actions, specification of complex 
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(request 

 (action "left-cg-module" 

  (move (object "camera") 

   (direction  

    to (location (0.0 0.4 0.5)) 

    from (location (0.0 3.0 -1.0))) 

   (path 

    (location (0.0 -0.03 0.0))) 

  (when NOW) 

  (velocity (special "crescendo")) 

  (interval (timed duration 5.0))))) 

Figure 7. Example of a request for a 
movement of the clock in ACTSCRIPT. 

temporal relationships, and translation to/from natural language3. 

One of the key features of ACTSCRIPT is its small number of primitives, notably for the 

description of action verbs. ACTSCRIPT employs 10 primitive actions: produce, attend, 

propel, move, grasp, ptrans (physical transportation of an object), atrans (attribute 

transference), mtrans (memory or concept transference), mbuild (memory construction), and 

the generic action dosomething. Complex descriptions use causal links described by the 

keywords result, reason, and enable. It is not feasible to describe the syntax and 

semantics of ACTSCRIPT in the scope of this paper (refer to [14]). 

Figures 7 show examples of a movement and an action goal, respectively, as expressed in 

ACTSCRIPT. Figure 7 is an example of a request from the It module to the "left-cg-module" to 

move the computer graphics camera from a determined location to other going through a 

                                                 

3  Although we have not ventured in building a natural language translator, we believe that NL translators similar to 

the ones built by Schank and his team are likely to successfully parse natural languages utterances from/to 

ACTSCRIPT due to the language's structural resemblance to Schank's conceptualizations 
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Table 1. The composition of the interval scripts for the different scenes of “It / I”. 

total number 
of intervals when constraints

scene I 120 51 43% 31 26% 38 32% 77 11
scene II 80 33 41% 17 21% 30 38% 52 18
scene III 92 46 50% 18 20% 28 30% 55 11
scene IV 115 41 36% 27 23% 47 41% 77 20

"C++"-only 
intervals

intervals defined on 
previous intervals timer intervals

 

specified "path" position. The movement should take 5 seconds, start immediately, and follow 

the pre-defined velocity profile curve called "crescendo". Upon receiving this request, the 

CG module checks if the object is available for movement, and in the positive case, the 

movement is started. A message — also in ACTSCRIPT — is sent back to the character module to 

communicate the state of the request. When the movement is finished, another message is sent to 

the main module (see [14] for other examples). 

7 THE COMPLEXITY OF THE INTERVAL SCRIPT OF “IT / I” 

For performance safety, we implemented each scene of “It / I” in a separate script, 

generating four different executable files that were loaded in the beginning of the corresponding 

scene. Table 1 summarizes the composition of the interval scripts of each scene of “It / I”, 

displaying the total number of intervals, the number of those that were composed exclusively of 

C++ code, the number of intervals defined based on previous intervals, the number of timers, and 

the number of WHEN statements, and explicitly defined constraints. 

As can be seen in the table, we have approximately 100 intervals per scene, of which about 

half are related to the interface to other elements of the system — the “C++”-only intervals. On 

average, 20% of the intervals were constructed based on previously defined intervals (as 

discussed above). In fact, in our experience we have found that the ease of abstracting interval 
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Figure 8. Scene 3 of “It / I”. After discovering that the switch is just an image, 
I tries to hang himself. 

scripts to be extremely helpful for the design and development process, becoming a major feature 

of the interval scripts system. 

Notice that about 40% of the intervals are simply timers. This does not come as a surprise to 

anyone who has actually built an interactive space, since it is extremely important to have pauses 

and “beats” to smooth and connect the different pieces. Table 1 also shows that the primary 

mechanism for controlling the experience in “It / I” ended up being the WHEN statements and not 

the temporal constraints. However, temporal constraints proved to be fundamental to avoid 

undesired situations and to deal with unexpected conjunctions of events and errors. 

8 PERFORMANCES AND AUDIENCE  PARTICIPATION 

“It / I” was produced in the summer/fall of 1997 with direction of Claudio Pinhanez, art 

direction of Raquel Coelho, and actor Joshua Pritchard (see fig. 8). The play was performed six 
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times at the MIT Media Laboratory for a total audience of about 500 people. We clearly observed 

that the audience easily understood the computer character’s actions and intentions. Particularly, 

we believe the play managed to keep the “suspension of disbelief” throughout its 40 minutes. The 

sound effects seem to have played a key role on creating the illusion that It was alive and to 

convey the mood and personality of the character. The play unfolded as a dialogue between the 

two actors, with the initiative shifting from one character to the other, as determined by the plot. 

 

Figure 9. Audience playing with the computer character It. 

Each performance was followed by an explanation of the workings of the computer-actor. 

After that the audience was invited to go up on stage and play scene 2 — the scene where It plays 

with a camera and a television, first in front of the audience, and individually afterwards (see fig. 

9). 

However, we never observed the audience-transformed-into-actors to get deeply involved in 

the story. One of the reasons for this is that they performed in front of an audience and it is hard 

for non-actors to become emotionally engaged in front of a large group of people. Besides that, 

the control system was not really designed to handle normal users. In particular, it had poor ways 

to handle user confusion and no strategies to provide help or suggestions. To solve the first 
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problem we thought about creating pieces of scenario that would materialize the fourth wall (that 

is, cover the front of the stage). To address the confusion problem, we decided to rethink the play 

as an interactive space for users in what became later the “It” project (described in [14]). 

In the performances held in November of 1997 the recognition of gestures was not robust 

enough and the occurrence of some gestures in two of the five scenes had to be manually 

communicated to the system. Otherwise, the 40-minute performance was completely 

autonomous, including during the audience participation time. Since the recognition of this kind 

of gesture has been demonstrated in computer vision (see [9]) and in real-time environments [12], 

we believe that there are no technical obstacles for a fully autonomous run of the play. 

9 CONCLUSION 

Both the interval script paradigm and the ACTSCRIPT communication language, developed 

and tested in “It / I”, address problems that are certainly not restricted to computer theater or to 

physical spaces. The key characteristic of “It / I” is a strong narrative structure that needs to be 

represented in the computer and controlled under difficult sensing conditions by a system 

composed of multiple modules. Such conditions are encountered many times in scenes with 

multiple characters in computer graphics movies and in virtual environments populated with 

characters. 

In particular, we do not see any fundamental difficulty in using interval scripts to control 

narratives in virtual reality-like environments where the user is one of the characters. In fact, in 

many practical situations in VR would probably benefit by the use of strong and robust 

development and control tools similar to ours. For example, in maintenance training systems the 

accomplishment of a task is normally associated with a correct sequence of operations and 

interactions with other members (possibly virtual) of a maintenance team. Clearly, the 
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representation of this scenario in a machine requires design/development systems that are able to 

capture the structured, narrative-like elements of the task. 

To our knowledge, “It / I” is the first play ever produced involving a character automatically 

controlled by a computer that was truly interactive. However, “It / I” is just the first step in our 

work of understanding and developing technology for story-based, interactive, immersive 

environments. Also, the performances of “It / I” in November of 1997 were only the first phase 

of our intended work with the play itself. After that, we have developed an interactive art 

installation, called “It”, that is an user-specific version of the story of the play. This installation, 

premiered in the spring of 1999 at the MIT Media Laboratory and described in detail in [14], 

aims to create an interactive experience for an user without previous contact with the material of 

the play. 

As part of the development process of “It”, the interval script paradigm and its associated 

language has been reexamined and improved. The current version of the interval scripts system 

comprises a simpler and more expressive language and a stronger run-time control engine, as 

described in [14]. Similarly, ACTSCRIPT has been extended and a full set of run-time 

communication routines has been incorporated in the language (see [14] for the full syntax of the 

language). 

Evaluating the success of a new language or paradigm is always difficult. We have not 

performed controlled tests to determine whether intervals scripts and ACTSCRIPT do simplify the 

development process of an interactive space. However, based on our experience in “It / I”, we 

can assert that both paradigms are quite expressive and convenient to use. In particular, we do not 

believe that it would be possible at all to create and perform “It / I” without the tools provided by 

interval scripts and ACTSCRIPT. 
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